retagged by
191 views
1 votes
1 votes

Consider the following predicates:

  • singular $(\mathrm{x}): \mathrm{x}$ is a singular matrix
  • orthogonal $(\mathrm{x}): \mathrm{x}$ is an orthogonal matrix
  • symmetric $(\mathrm{x}): \mathrm{x}$ is a symmetric matrix

What is the correct translation of the assertion given below into logical notation?

Every singular and orthogonal matrix is not symmetric.

  1. $\forall \mathrm{x}[(\operatorname{singular}(\mathrm{x}) \vee \operatorname{orthogonal}(\mathrm{x})) \rightarrow \sim \operatorname{symmetric}(\mathrm{x})]$
  2. $\forall \mathrm{x}[\sim \operatorname{singular}(\mathrm{x}) \wedge \sim \operatorname{orthogonal}(\mathrm{x}) \vee \sim \operatorname{symmetric}(\mathrm{x})]$
  3. $\forall \mathrm{x}[\sim \operatorname{singular}(\mathrm{x}) \vee \sim$ orthogonal $(\mathrm{x}) \vee \sim \operatorname{symmetric}(\mathrm{x})]$
  4. $\forall \mathrm{x}[\sim \operatorname{singular}(\mathrm{x}) \wedge \sim \operatorname{orthogonal}(\mathrm{x}) \wedge \sim \operatorname{symmetric}(\mathrm{x})]$
retagged by

1 Answer

2 votes
2 votes
It is actually be:

$\forall \mathrm{x}[(\operatorname{singular}(\mathrm{x}) \wedge \operatorname{orthogonal}(\mathrm{x})) \rightarrow \sim \operatorname{symmetric}(\mathrm{x})]$

$\mathrm{P} \rightarrow \mathrm{Q} \Leftrightarrow \neg \mathrm{P} \vee \mathrm{Q}$ So, above formula can be written as

$\forall \mathrm{x}[(\sim \operatorname{singular}(\mathrm{x}) \vee \sim$ orthogonal $(\mathrm{x})) \vee \sim \operatorname{symmetric}(\mathrm{x})].$
Answer:

Related questions