Dark Mode

36 votes

Best answer

Since, the given matrix is an upper triangular one, all eigenvalues are 0. And hence $A-\lambda I=A$

So the question asks

$\begin{bmatrix} 0 &0 &\alpha \\ 0&0 &0 \\ 0& 0& 0 \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$

what $x_1,x_2,x_3$ are suitable?

which means $x_1$times column1+$x_2$times column2+$x_3$ times column3=Zero Vector

Look carefully,if you take any linear combination of columns 1 and 2 and don't take column 3(means $x_3=0$), the result will be a zero vector.

So, if we have our X=$\begin{bmatrix} \beta\\ \gamma\\ 0 \end{bmatrix}$ where $\beta, \gamma$ are any scalar quantity,

but $x_3$ must be necessarily zero to get zero vector.

Hence, only option (B) and (D) satisfy.

So the question asks

$\begin{bmatrix} 0 &0 &\alpha \\ 0&0 &0 \\ 0& 0& 0 \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$

what $x_1,x_2,x_3$ are suitable?

which means $x_1$times column1+$x_2$times column2+$x_3$ times column3=Zero Vector

Look carefully,if you take any linear combination of columns 1 and 2 and don't take column 3(means $x_3=0$), the result will be a zero vector.

So, if we have our X=$\begin{bmatrix} \beta\\ \gamma\\ 0 \end{bmatrix}$ where $\beta, \gamma$ are any scalar quantity,

but $x_3$ must be necessarily zero to get zero vector.

Hence, only option (B) and (D) satisfy.

Himanshu3 No, zero vector can’t be eigen vector of a matrix.

https://math.stackexchange.com/questions/990016/can-the-zero-vector-be-an-eigenvector-for-a-matrix

1

28 votes

Given matrix is an upper triangular matrix. Therefore diagonal elements of A are eigen values of A, i.e. λ=0,0,0.

Consider the characteristic equation $(A-λI)x=0$

$\Rightarrow$ $\begin{bmatrix} 0-\lambda & 0 & \alpha \\ 0 & 0-\lambda & 0\\ 0 & 0 & 0-\lambda \end{bmatrix}$ $\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}$ = $\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$

To find the eigen vector of A corresponding to $\lambda$

Put the eigen value of A in the characteristic equation

i.e. $\begin{bmatrix} 0 & 0 & \alpha \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}$ = $\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$

Now we have

$\alpha$$x_3$=0

$\Rightarrow$$x_3$ = 0

Therefore, any non zero vector with z-component as zero is an eigen vector.

Hence in the given options $B$ and $D$ are correct.

Consider the characteristic equation $(A-λI)x=0$

$\Rightarrow$ $\begin{bmatrix} 0-\lambda & 0 & \alpha \\ 0 & 0-\lambda & 0\\ 0 & 0 & 0-\lambda \end{bmatrix}$ $\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}$ = $\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$

To find the eigen vector of A corresponding to $\lambda$

Put the eigen value of A in the characteristic equation

i.e. $\begin{bmatrix} 0 & 0 & \alpha \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}$ = $\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$

Now we have

$\alpha$$x_3$=0

$\Rightarrow$$x_3$ = 0

Therefore, any non zero vector with z-component as zero is an eigen vector.

Hence in the given options $B$ and $D$ are correct.

1 vote

Guys this is an easy question, so let us not make it complex.

As most of the people have already explained that $|A-\lambda I|*eigenvector =\begin{bmatrix} 0 &0 &\alpha \\ 0 & 0 &0 \\ 0& 0 & 0 \end{bmatrix}$$\begin{bmatrix} x_{1}\\ x_{2}\\ x_{3} \end{bmatrix}$

Now see that we are getting $0*x_{1} + 0*x_{2} + \alpha *x_{3}=0$ as the only useful equation.

Now put whatever the value of $x_{1}$ ,$x_{2}$ and $x_{3}$, we will get our eigenvectors, **EXCEPT **the cases where $\alpha$ has to be zero because in question it clearly mentioned that $\alpha \neq 0$. This condition will only fail when $x_{3}\neq 0.$ And therefore now you can match the options very easily.