recategorized by
11,377 views
49 votes
49 votes

The eigen vector $(s)$ of the matrix $$\begin{bmatrix} 0 &0 &\alpha\\ 0 &0 &0\\ 0 &0 &0 \end{bmatrix},\alpha \neq 0$$ is (are)

  1. $(0,0,\alpha)$
  2. $(\alpha,0,0)$
  3. $(0,0,1)$
  4. $(0,\alpha,0)$
recategorized by

7 Answers

Best answer
51 votes
51 votes
Since, the given matrix is an upper triangular one, all eigenvalues are 0. And hence $A-\lambda I=A$

So the question asks

$\begin{bmatrix} 0 &0 &\alpha \\ 0&0 &0 \\ 0& 0& 0 \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$

what $x_1,x_2,x_3$ are suitable?

which means $x_1$times column1+$x_2$times column2+$x_3$ times column3=Zero Vector

Look carefully,if you take any linear combination of columns 1 and 2 and don't take column 3(means $x_3=0$), the result will be a zero vector.

So, if we have our X=$\begin{bmatrix} \beta\\ \gamma\\ 0 \end{bmatrix}$ where $\beta, \gamma$ are any scalar quantity,

but $x_3$ must be necessarily zero to get zero vector.

Hence, only option (B) and (D) satisfy.
selected by
40 votes
40 votes
Given matrix is an upper triangular matrix. Therefore diagonal elements of A are eigen values of A, i.e. λ=0,0,0.

Consider the characteristic equation $(A-λI)x=0$

$\Rightarrow$ $\begin{bmatrix} 0-\lambda & 0 & \alpha \\ 0 & 0-\lambda & 0\\ 0 & 0 & 0-\lambda \end{bmatrix}$ $\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}$ = $\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$

To find the eigen vector of A corresponding to $\lambda$
Put the eigen value of A in the characteristic equation

i.e. $\begin{bmatrix} 0 & 0 & \alpha \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}$ = $\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$

Now we have

$\alpha$$x_3$=0

$\Rightarrow$$x_3$ = 0

Therefore, any non zero vector with z-component as zero is an eigen vector.
Hence in the given options $B$ and $D$ are correct.
edited by
16 votes
16 votes
Answer: $B, D$

Eigen values are: $0,0,0$

The eigen vector should satisfy the equation: $\alpha$z $=$ $0$
edited by
3 votes
3 votes

Guys this is an easy question, so let us not make it complex.

As most of the people have already explained that $|A-\lambda I|*eigenvector =\begin{bmatrix} 0 &0 &\alpha \\ 0 & 0 &0 \\ 0& 0 & 0 \end{bmatrix}$$\begin{bmatrix} x_{1}\\ x_{2}\\ x_{3} \end{bmatrix}$

Now see that we are getting $0*x_{1} + 0*x_{2} + \alpha *x_{3}=0$ as the only useful equation.

Now put whatever the value of $x_{1}$ ,$x_{2}$ and $x_{3}$, we will get our eigenvectors, EXCEPT the cases where $\alpha$ has to be zero because in question it clearly mentioned that $\alpha \neq 0$. This condition will only fail when $x_{3}\neq 0.$ And therefore now you can match the options very easily.

Answer:

Related questions

1 votes
1 votes
1 answer
1
Kathleen asked Sep 13, 2014
5,086 views
Simpson's rule for integration gives exact result when $f(x)$ is a polynomial of degree$1$$2$$3$$4$
5 votes
5 votes
1 answer
2
Kathleen asked Sep 13, 2014
1,603 views
The differential equation $\frac{d^2 y}{dx^2}+\frac{dy}{dx}+\sin y =0$ is:linearnon- linear ...
1 votes
1 votes
1 answer
4
Kathleen asked Sep 13, 2014
3,239 views
The function $f\left(x,y\right) = x^2y - 3xy + 2y +x$ hasno local extremumone local minimum but no local maximumone local maximum but no local minimumone local minimum an...