recategorized by
1,854 views
2 votes
2 votes
What will be the coefficient of x^17 in the expansion of (x+x^2+x^3+x^4+x^5+x^6)^4?
 
recategorized by

2 Answers

Best answer
5 votes
5 votes
$[x^{17}](x+x^2+x^3+x^4+x^5+x^6)^4$

takeout x from the expression

$x^4(1+x+x^2+x^3+x^4+x^5)^4$

we got $x^4$, we need to find $x^{13}$ in the given expression so that we can get $x^{17}$

using generating function

$1/(1-x) = 1 + x + x^2 + x^3 + ..........................................\mathit{eq.1}$

$x^6/(1-x) = x^6 + x^7 + x^8 + x^9 + ..........................................\mathit{eq.2}$

$\mathit{eq.1} - \mathit{eq.2}$

$1-x^6 / 1-x = 1 + x + x^2 + x^3 + x^4 + x^5$

$(1-x^6 / 1-x)^4$

$(1-x^6 )^4 *(1-x)^{-4}$

$(1-x^6 )^4 = \sum_{r \geq 0} (-1)^r \binom{4}{r} x^{6r}$                                   $[ {x^{6}}^r = x^{6r}]$

 

using the negative binomial theorem,

$(1-x)^{-4} = \sum_{r \geq 0} \binom{4 + r -1}{r} x^r$

Thus, when we convolve the above two generating functions, the x^13 coefficient is

(0 , 13) , (1 , 7 ) and (2 , 1)

$\binom{4}{0}\binom{4 + 13 - 1}{13} - \binom{4}{1}\binom{4 + 7-1}{5} + \binom{4}{2}\binom{4+1-1}{1}$

$\binom{4}{0}\binom{16}{13} - \binom{4}{1}\binom{10}{7} + \binom{4}{2}\binom{5}{1}$

$560 - 4*120 + 6*4$

$560 - 480 + 24$

$104$
selected by
1 votes
1 votes

 (x+x^2+x^3+x^4+x^5+x^6)^4

(x^4)(1+x+x^2+x^3+x^4+x^5)^4

= (x^4)((1-x^6)^4/(1-x)^4)      Expand both series by using binomial theorem.for denominator use standard formula for 1/(1+x)^n

=(x^4)(1-4x^6+6x^12+.....)(1+4x+10x^2+....)

find coefficient of x^13 in second part term

=16C3-4*10C7+24

=560-480+24

=104

edited by

Related questions

7 votes
7 votes
2 answers
2
0 votes
0 votes
1 answer
3
2 votes
2 votes
2 answers
4