The Gateway to Computer Science Excellence
First time here? Checkout the FAQ!
x
+1 vote
72 views
A 3 X 3 matrix P has 3 eigen values $-1 , 0.5 , 3$
What will be eigen values of $P^{2} + 2P + I$
asked in Linear Algebra by Loyal (6.4k points)
edited by | 72 views
0
The eigenvalues are $0,2.25,16$. Is this correct?
0
Yes..how did u solved ?
+1

According to Cayley Hamilton theorem: Every Square matrix satisfies its own characteristic equation.

                  So$, P=\lambda I$


Given that $\lambda_{1}=0,\lambda_{2}=0.5,\lambda_{3}=3$

$P^{2}+2P+I=(\lambda I)^{2}+2(\lambda I)+I=\lambda ^{2}+2\lambda +1$

Put $\lambda=0$

$\lambda^{2}+2\lambda +1 = 0+0+1=1$

Put $\lambda=0.5$

$\lambda^{2}+2\lambda_{3} +1=(0.5)^{2}+2(0.5)+1=0.25+1+1=2.25$

Put $\lambda=3$

$\lambda^{2}+2\lambda +1=(3)^{2}+2(3)+1=9+6+1=16$

+1
0
This is nice pdf thanks!!

Please log in or register to answer this question.

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
48,411 questions
52,746 answers
183,341 comments
68,213 users