# ISI2014-DCG-19

118 views

It is given that $e^a+e^b=10$ where $a$ and $b$ are real. Then the maximum value of $(e^a+e^b+e^{a+b}+1)$ is

1. $36$
2. $\infty$
3. $25$
4. $21$
in Calculus
recategorized
0
$x+y=10$

$max(x+y+xy+1)=?$

$=10+max(xy)+1$

$10+5\times 5+1=36$

($x\times y$ will be maximum when we take $x=y$)

$\underline{\mathbf{Answer:A}}$

$\underline{\mathbf{Solution:}}$

$\mathrm{e^a+e^b = 10,\;\;a \in R\;\;\;[Given]} \tag{1}$

Let $\mathrm{x = e^a}$, and $\mathrm {y = e^b}$

Then,

$\mathrm{\mathbf{max} (e^a+e^b+e^ae^b + 1) = \mathbf{max}(x+y+xy+1) = x+y+\mathbf{max}(xy) +1}$

Now, $\mathbf{xy}$ is maximum only when: $\mathrm{x = 5,\;y = 5\tag{2}}$

$\therefore \text{Maximum Value} = \underbrace{10}_\text{from (1)} + \underbrace{25}_\text{from(2)} + 1 = 36$

$\therefore \mathbf A$ is the correct option.

edited by

## Related questions

1 vote
1
122 views
Suppose that the function $h(x)$ is defined as $h(x)=g(f(x))$ where $g(x)$ is monotone increasing, $f(x)$ is concave, and $g’’(x)$ and $f’’(x)$ exist for all $x$. Then $h(x)$ is always concave always convex not necessarily concave None of these
1 vote
The function $f(x) = x^{1/x}, \: x \neq 0$ has a minimum at $x=e$; a maximum at $x=e$; neither a maximum nor a minimum at $x=e$; None of the above
Let $f(x)=\sin x^2, \: x \in \mathbb{R}$. Then $f$ has no local minima $f$ has no local maxima $f$ has local minima at $x=0$ and $x=\pm\sqrt{(k+\frac{1}{2} ) \pi}$ for odd integers $k$ and local maxima at $x=\pm\sqrt{(k+\frac{1}{2} ) \pi}$ for even integers $k$ None of the above
The function $f(x)=\sin x(1+ \cos x)$ which is defined for all real values of $x$ has a maximum at $x= \pi /3$ has a maximum at $x= \pi$ has a minimum at $x= \pi /3$ has neither a maximum nor a minimum at $x=\pi/3$