retagged by
148 views
3 votes
3 votes

The logic function implemented by the circuit below is (ground implies a logic $\text{“0”})$

  1. $\text{F=AND(P,Q})$
  2. $\text{F=OR(P,Q})$
  3. $\text{F=XNOR(P,Q})$
  4. $\text{F=XOR(P,Q})$
retagged by

2 Answers

Best answer
6 votes
6 votes

The input is connected with ground i.e “0”.

So,   $I_{0} = \bar{\bar{0}}= 0$

        $I_{1 }= I_{2} = \bar{0} = 1$

        $I_{3} = 0$

So, $F= P’Q’.(0) + P’Q.(1) + PQ’.(1) + PQ.(0) = P’Q + PQ’ = XOR \ (P, Q) $

 

$Ans: Option \ D$

selected by
Answer:

Related questions

126
views
1 answers
4 votes
GO Classes asked Oct 12, 2023
126 views
The figure below shows a multiplexer where $S_{1}$ and $S_{0}$ are the select lines, $I_{0}$ to $I_{3}$ are the input data lines, $\text{EN}$ is the enable line, ... {Q}R.$PQ+Q\overline{R}.$P\overline{Q}R+\overline{P}Q.$\overline{Q}+PR.$
102
views
2 answers
2 votes
GO Classes asked Oct 12, 2023
102 views
An $8$- to $1$ multiplexer is used to implement a logical function $Y$ as shown in the figure. The output $Y$ ... D$Y= \overline{A} \: \overline{B} \: D + A \: \overline{B} \: C$
96
views
2 answers
2 votes
GO Classes asked Oct 12, 2023
96 views
Consider the $ \text{2-bit}$ multiplexer $\text{(MUX)}$ shown in the figure. For $\text{OUTPUT}$ to be the $\text{XOR}$ of $\text{C}$ and $\text{D},$ ... , A_{3} = 0$A_{0} = 1, A_{1} = 1, A_{2} = 0, A_{3} = 0$
78
views
1 answers
2 votes
GO Classes asked Oct 12, 2023
78 views
In the circuit shown below, $\mathrm{P}$ and $\mathrm{Q}$ are the inputs. The logical function realized by the circuit shown below is$\mathrm{Y}=\mathrm{PQ}$\mathrm{ ... Y}=\overline{\mathrm{PQ}}$\mathrm{Y}=\overline{\mathrm{P}+\mathrm{Q}}$