$$\textbf{Contents}$$
Web Page
Syllabus: Random variables, Uniform, Normal, Exponential, Poisson and Binomial distributions. Mean, median, mode and standard deviation. Conditional probability and Bayes theorem
$$\small{\overset{{\large{\textbf{Mark Distribution in Previous GATE}}}}{\begin{array}{cccccccc}\hline
\textbf{Year}&\textbf{2019}&\textbf{2018}&\textbf{20171}&\textbf{20172}&\textbf{20161}&\textbf{20162}&\textbf{Minimum}&\textbf{Average}&\textbf{Maximum}
\\\hline\textbf{1 Mark Count}&2&1&1&0&1&1&0&1&2
\\\hline\textbf{2 Marks Count}&1&1&0&3&1&0&0&1&3
\\\hline\textbf{Total Marks}&4&3&1&6&3&1&\bf{1}&\bf{3}&\bf{6}\\\hline
\end{array}}}$$
Topic Covered in Videos 
Video link from GO Youtube channel 
 Probability and Counting
 Story Proofs, Axioms of Probability
 Birthday Problem, Properties of Probability
 Conditional Probability
 Law of Total Probability
 Monty Hall, Simpson's Paradox
 Gambler's Ruin and Random Variables
 Random Variables and Their Distributions
 Expectation, Indicator Random Variables, Linearity
 The Poisson distribution
 Discrete vs. Continuous, the Uniform
 Normal distribution
 Location, Scale, and LOTUS
 Exponential Distribution

GO Videos 
Topics to be Covered: