# Recent questions tagged tifr2015 1
Consider the following grammar (the start symbol is $E$) for generating expressions. $E \rightarrow T - E \mid T + E \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow 0 \mid1\mid 2\mid 3\mid 4\mid 5\mid 6\mid 7\mid 8\mid 9$ With respect to this grammar, which of the following trees is the valid evaluation tree for the expression $2*3*4 - 5*6+7$?
2
Consider the following concurrent program (where statements separated by | | with-in cobegin-coend are executed concurrently). x:=1 cobegin x:= x + 1 || x:= x + 1 || x:= x + 1 coend Reading and writing of variables is atomic but evaluation of expressions is not atomic. The set of possible values of $x$ ... $\left \{2, 4 \right \}$ $\left \{ 2, 3 \right \}$ $\left \{2 \right \}$
3
Two undirected graphs $G_{1}=(V_{1}, E_{1})$ and $G_{2}= (V_{2}, E_{2})$ are said to be isomorphic if there exist a bijection $\pi: V_{1} \rightarrow V_{2}$ such that for all $u, v \in V_{1}, (u, v) \in E_{1}$ if and only $( \pi (u), \pi (v)) \in E_{2}$. Consider the ... (ii) $L$ is $NP$- hard. (iii) $L$ is undecidable. Only $(i)$ Only $(ii)$ Only $(iii)$ $(i)$ and $(ii)$ $(ii)$ and $(iii)$
4
Let $t_{n}$ be the sum of the first $n$ natural numbers, for $n > 0$. A number is called triangular if it is equal to $t_{n}$ for some $n$. Which of the following statements are true: (i) There exists three successive triangular numbers whose product is a perfect square. (ii) If the triangular ... $(i)$ only. $(ii)$ only. $(iii)$ only. All of the above. None of the above.
5
Let $K_{n}$ be the complete graph on $n$ vertices labeled $\left\{1, 2,\dots ,n\right\}$ with $m=\frac{n (n - 1)}{2}$ edges. What is the number of spanning trees of $K_{n}$? $\frac{m}{n - 1}$ $m^{n - 1}$ $n^{n - 2}$ $n^{n - 1}$ None of the above.
6
Consider the languages $L_{1}= \left\{a^{m}b^{n}c^{p} \mid (m = n \vee n = p) \wedge m + n + p \geq 10\right\}$ $L_{2}= \left\{a^{m}b^{n}c^{p} \mid (m = n \vee n = p) \wedge m + n + p \leq 10\right\}$ State which of the following is true? $L_{1}$ ... $L_{1}$ is regular and $L_{2}$ is not regular. $L_{1}$ is not regular and $L_{2}$ is regular. Both $L_{1}$ and $L_{2}$ are infinite.
7
A Boolean expression is an expression made out of propositional letters (such as $p, q, r$) and operators $\wedge$, $\vee$ and $\neg$; e.g. $p\wedge \neg (q \vee \neg r)$. An expression is said to be in sum of product form ... operator. Every Boolean expression is equivalent to an expression without $\wedge$ operator. Every Boolean expression is equivalent to an expression without $\neg$ operator.
8
Let $\sum_{1}= \left\{a\right\}$ be a one letter alphabet and $\sum_{2}= \left\{a, b\right\}$ be a two letter alphabet. A language over an alphabet is a set of finite length words comprising letters of the alphabet. Let $L_{1}$ and $L_{2}$ be the set of languages ... countably infinite. $L_{1}$ is countable but $L_{2}$ is not. $L_{2}$ is countable but $L_{1}$ is not. Neither of them is countable.
9
Let $a, b, c$ be regular expressions. Which of the following identities is correct? $(a + b)^{*} = a^{*}b^{*}$ $a(b + c) = ab + c$ $(a + b)^{*} = a^{*} + b^{*}$ $(ab + a)^{*}a = a(ba + a)^{*}$ None of the above.
10
Let $B$ consist of all binary strings beginning with a $1$ whose value when converted to decimal is divisible by $7$. $B$ can be recognized by a deterministic finite state automaton. $B$ can be recognized by a non-deterministic finite state automaton ... but not by a deterministic push-down automaton. $B$ cannot be recognized by any push down automaton, deterministic or non-deterministic.
11
Suppose $\begin{pmatrix} 0&1 &0&0&0&1 \\ 1&0&1&0&0&0 \\ 0&1&0&1&0&1 \\ 0&0&1&0&1&0 \\ 0&0&0&1&0&1 \\ 1&0&1&0&1&0 \end{pmatrix}$ is the adjacency matrix of an undirected graph with six vertices: that is, the rows and columns are indexed by vertices of the graph, and an entry is $1$ if the ... has the above adjacency matrix? Only $(i)$ Only $(ii)$ Only $(iii)$ Only $(iv)$ $(i)$ and $(ii)$
12
First, consider the tree on the left. On the right, the nine nodes of the tree have been assigned numbers from the set $\left\{1, 2,\ldots,9\right\}$ so that for every node, the numbers in its left subtree and right subtree lie in disjoint intervals (that is, all numbers in one subtree are less than all numbers in ... $2^{4}.3^{2}.5.9=6480$ $2^{3}.3.5.9=1080$ $2^{4}=16$ $2^{3}.3^{3}=216$
13
Consider the following code fragment in the $C$ programming language when run on a non-negative integer $n$. int f (int n) { if (n==0 || n==1) return 1; else return f (n - 1) + f(n - 2); } Assuming a typical implementation of the language, what ... polynomial in $n$. This algorithm runs in polynomial time in $n$ and the optimal running time is polynomial in $n$. The algorithm does not terminate.
14
Consider the following undirected connected graph $G$ with weights on its edges as given in the figure below. A minimum spanning tree is a spanning tree of least weight and a maximum spanning tree is one with largest weight. A second best minimum spanning ... minimum spanning tree here. There is unique minimum spanning tree, however there is more than one second-best minimum spanning tree here.
15
Consider the following recurrence relation: $T(n) = \begin{cases} 2T (\lfloor\sqrt{n}\rfloor)+ \log n & \text{if }n \geq 2 \\ 1& \text{if }n = 1 \end{cases}$ Which of the following statements is TRUE? $T(n)$ is $O(\log n)$. $T(n)$ is $O(\log n. \log \log n)$ but not $O(\log n)$. $T(n)$ is ... $O(\log^{2} n)$ but not $O(\log^{3/2} n)$. $T(n)$ is $O(\log^{2} n. \log \log n)$ but not $O(\log^{2} n)$.
16
Let $A$ and $B$ be non-empty disjoint sets of real numbers. Suppose that the average of the numbers in the first set is $\mu_{A}$ and the average of the numbers in the second set is $\mu_{B}$; let the corresponding variances be $v_{A}$ and $v_{B}$ respectively. If the average of the elements in $A \cup B$ ... $p.v_{A}+ (1 - p). v_{B} + (\mu_{A}- \mu_{B})^{2}$
17
Consider the following $3 \times 3$ matrices. $M_{1}=\begin{pmatrix} 0&1&1 \\ 1&0&1 \\ 1&1&0 \end{pmatrix}$ $M_{2}=\begin{pmatrix} 1&0&1 \\ 0&0&0 \\ 1&0&1 \end{pmatrix}$ How may $0-1$ column vectors of the form $X$ ... $2$ means all operations are done modulo $2$, i.e, $3 = 1$ (modulo $2$), $4 = 0$ (modulo $2$)). None Two Three Four Eight
18
Imagine the first quadrant of the real plane as consisting of unit squares. A typical square has $4$ corners: $(i, j), (i+1, j), (i+1, j+1),$and $(i, j+1)$, where $(i, j)$ is a pair of non-negative integers. Suppose a line segment $l$ connecting $(0, 0)$ to ... through a point in the interior of the square. How many unit squares does $l$ pass through? $98,990$ $9,900$ $1,190$ $1,180$ $1,010$
19
Consider two independent and identically distributed random variables $X$ and $Y$ uniformly distributed in $[0, 1]$. For $\alpha \in \left[0, 1\right]$, the probability that $\alpha$ max $(X, Y) < XY$ is $1/ (2\alpha)$ exp $(1 - \alpha)$ $1 - \alpha$ $(1 - \alpha)^{2}$ $1 - \alpha^{2}$
20
Suppose that $f(x)$ is a continuous function such that $0.4 \leq f(x) \leq 0.6$ for $0 \leq x \leq 1$. Which of the following is always true? $f(0.5) = 0.5$. There exists $x$ between $0$ and $1$ such that $f(x) = 0.8x$. There exists $x$ between $0$ and $0.5$ such that $f(x) = x$. $f(0.5) > 0.5$. None of the above statements are always true.
21
Let $f(x), x\in \left[0, 1\right]$, be any positive real valued continuous function. Then $\displaystyle \lim_{n \rightarrow \infty} (n + 1) \int_{0}^{1} x^{n} f(x) \text{d}x$ equals. $\max_{x \in \left[0, 1\right]} f(x)$ $\min_{x \in \left[0, 1\right]} f(x)$ $f(0)$ $f(1)$ $\infty$
22
Consider a square of side length $2$. We throw five points into the square. Consider the following statements: There will always be three points that lie on a straight line. There will always be a line connecting a pair of points such that two points lie on one side of the line and one point on the ... the above is true: $(i)$ only. $(ii)$ only. $(iii)$ only. $(ii)$ and $(iii)$. None of the above.
23
There is a set of $2n$ people: $n$ male and $n$ female. A good party is one with equal number of males and females (including the one where none are invited). The total number of good parties is. $2^{n}$ $n^{2}$ $\binom{n}{⌊n/2⌋}^{2}$ $\binom{2n}{n}$ None of the above.
24
A $1 \times 1$ chessboard has one square, a $2 \times 2$ chessboard has five squares. Continuing along this fashion, what is the number of squares on the regular $8 \times 8$ chessboard? $64$ $65$ $204$ $144$ $256$
25
Ram has a fair coin, i.e., a toss of the coin results in either head or tail and each event happens with probability exactly half $(1/2)$. He repeatedly tosses the coin until he gets heads in two consecutive tosses. The expected number of coin tosses that Ram does is. $2$ $4$ $6$ $8$ None of the above.
26
What is logically equivalent to "If Kareena and Parineeti go to the shopping mall then it is raining": If Kareena and Parineeti do not go to the shopping mall then it is not raining. If Kareena and Parineeti do not go to the shopping mall then it is raining. If it ... go to the shopping mall. If it is not raining then Kareena and Parineeti do not go to the shopping mall. None of the above.
27
The Boolean function obtained by adding an inverter to each and every input of an $AND$ gate is: $OR$ $XOR$ $NAND$ $NOR$ None of the above
Let $|z| < 1$. Define $M_{n}(z)= \sum_{i=1}^{10} z^{10^{n}(i - 1)}?$ what is $\prod_{i=0}^{\infty} M_{i}(z)= M_{0}(z)\times M_{1}(z) \times M_{2}(z) \times ...?$ Can't be determined. $1/ (1 - z)$ $1/ (1 + z)$ $1 - z^{9}$ None of the above.
Consider a circle with a circumference of one unit length. Let $d< \dfrac{1}{6}$. Suppose that we independently throw two arcs, each of length $d$, randomly on this circumference so that each arc is uniformly distributed along the circle circumference. The arc attaches itself exactly to the circumference so that ... equals $(1 - 3d)$ It equals $(1 - 2d)$ It equals $1$ It equals $(1 - d)$ $(1 - d)$
Consider a $6$-sided die with all sides not necessarily equally likely such that probability of an even number is $P (\left \{2, 4, 6 \right \}) =\dfrac{1}{2}$, probability of a multiple of $3$ is $P (\left \{3, 6 \right \}) = 1/3$ and probability of $1$ ... $P(\left \{5 \right \}) \leq \dfrac{1}{6}$ $P(\left \{ 5 \right \}) \leq \dfrac{1}{3}$ $\text{None of the above.}$